If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6^-3x-4=(1/6)^6x
We move all terms to the left:
6^-3x-4-((1/6)^6x)=0
Domain of the equation: 6)^6x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-3x-((+1/6)^6x)-4+6^=0
We add all the numbers together, and all the variables
-3x-((+1/6)^6x)=0
We multiply all the terms by the denominator
-3x*6)^6x)-((+1=0
Wy multiply elements
-18x^2+1=0
a = -18; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-18)·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-18}=\frac{0-6\sqrt{2}}{-36} =-\frac{6\sqrt{2}}{-36} =-\frac{\sqrt{2}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-18}=\frac{0+6\sqrt{2}}{-36} =\frac{6\sqrt{2}}{-36} =\frac{\sqrt{2}}{-6} $
| 8(4-2x)=4(3-5x)+2x | | h/6=-1=-3 | | 8c+10=-14 | | -20=-5(c-6)+10 | | –6−6y=–7y | | (4x+3)+(2x-1)+(5x-2)=180 | | 5=5n+30 | | 6=2+(y+2) | | 6a=2a-4÷7 | | –20=–5(c–6)+10 | | ½x-5=21 | | 7x-5+x=4 | | 1/4w+1/3=5 | | 5(u-3)=25 | | x+21+46=180 | | 16x^2−36=0. | | 1=9+x/3 | | -5(-4v+2)-7v=3(v-6)-4 | | 3+p/3=3 | | 2x-5(7-(x-6)+3x)-28=39 | | 3x+8=-55-4x | | .45x=55 | | -2x-10=10 | | 135-0.08=x | | 10-0.1x=5 | | -7z-16=19 | | (4x+2)+(6x-12)=180 | | (u+3)/10=7/8 | | 5(0.5x)=3x-(0.5x) | | 72=-6(c-4) | | 1=r+5/6 | | f(-6)=12+10-6−5-62 |